Short Baseline Physics Working Group

Sanjib R. Mishra for Roberto Petti, Carolina

```
LBNE-Physics: [\Theta_{13}, \delta_{CP}, Mass-Hierarchy]
V(Bar)e-Appearance & Vµ(Bar)-Appearance;
```

Precision Measurements: Weak-Mixing Angle, ΔS , Sum-Rules, ...

Searches

REQUIREMENTS FOR LBL STUDIES

- ♦ Determination of the relative abundance and of the energy spectrum of the four neutrino species in LBNE beam: $|\overline{\nu}_{\mu}|$, $|\overline{\nu}_{\mu}|$, $|\overline{\nu}_{e}|$, and $|\overline{\nu}_{e}|$ CC-interactions.
 - μ^+/μ^- separation \Longrightarrow magnetized detector;
 - e^+/e^- separation;
 - Identify μ^+/μ^- from π and K decays in NC interactions or high $y_{\rm Bj}$ CC events; $\longrightarrow V(Bar)\mu$ -Disappearance
 - Identify e^+/e^- from π^0/γ conversion near the interaction vertex in NC or high $y_{\rm Bj}$ CC events.

 **\bigsim \mathbf{V}(\mathbf{Bar})e-\mathbf{Appearance}
- ♦ Because Flux($\forall i$) \neq Flux($\forall j$) at ND and FD \Rightarrow need $\sigma(CC)$ & $\sigma(NC/CC)$
- \bigstar Measure exclusive and semi-exclusive NC and CC cross-sections: Quasi-elastic, single π , Deep Inelastic Scattering (DIS), and coherent.
- ◆ Calibration of the absolute neutrino energy scale
- ◆ Provide an 'Event-Generator Measurement' for the FD by measuring the detailed topologies (complete hadronic multiplicity) of NC and CC interactions.

Configurations

🐧 `Standard' LBNE beam

Option-A: 3+3 years with 700KW \geq 7.3*10**20 PoT/Yr \Rightarrow Used for sensitivity 100k $\vee \mu$ -CC Events/Pr/ton/10**20 Pr

ND Configurations: (ND Group: Mauger & Louis)

▲LAr:

- (a)70 tons with no magnetic field
- (b)20 tons with magnetic field

♣ Fine-Grain Tracker:

- (a) Low Density (0. Igm/cm³) Straw-Tube Tracker in a B=0.4T with TR, Hermitic ECAL, Muon-detectors
 - (b) Scintillator Tracker with a downstream muon Spectrometer

 - (a) V-H2O Interactions: ~1.2tons of H2O
- (b) With an additional D2O target, measure an absolute flux measurement using QE(Q**2~0)

option-B: Intensity expected with the Proton-Injector

TOPICS AND TALKS

- ◆ In-situ measurement of fluxes and backgrounds (docdb#785);
- Requirements for flux determination (docdb#946);
- MINERvA measurements (docdb#894);
- NOMAD measurements (docdb#930);
- Complementarity with JLab measurements (docdb#894);
- ◆ Electroweak measurements (docdb#785);
- ♦ NC elastic scattering off proton (docdb #774 and 883);
- Strange form factors (docdb#774);
- → Nuclear effects in QE interactions (docdb#774);
- Search for high Δm^2 oscillations (docdb#914 and 946);
- \bullet Extraction of the fluxes with high Δm^2 oscillations (docdb#946);
- ◆ Search for sterile neutrinos (docdb #775 and);
- → MiniBooNE low energy anomaly (docdb#775);
- Neutrino magnetic moment (docdb#956);

■Neutrino-induced Proton-Decay backgrounds ■Measurement of Adler sum-rule

IN-SITU FLUX MEASUREMENT

- Determination of the absolute flux normalization with 3 independent methods:
 - Inverse Muon Decay: $\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$

 - NC elastic scattering off electrons: $\nu e^- \to \nu e^-$ Quasi-elastic scattering on D for $Q^2 \to 0: \nu_\mu n \to \mu^- p$
- Determination of relative flux as a function of energy with 3 independent methods:
 - Low- ν_0 method;
 - NC elastic scattering off electrons;
 - ${}^{\textstyle \bullet}$ Quasi-elastic scattering on D for $\,Q^2 \to 0\,$

औं V-Electron NC Events:

WMA), 0.238 at Q~0.07 GeV, known to ≤1% precision

WMA

Mixing Angle

Mixing Angl

```
** Identify V-El elastic NC events
Two Steps to Analysis
```

***** Electron-ID:TR

* Kinematic cut: ζ=Pe(I-cosΘe)≤Cut

***** Estimate background and Efficiency

**Use the SM- $\sigma(v-El$ elastic NC) to obtain the

Absolute V-Flux

 \rightarrow ($\nu\mu+\nu\mu$ -Bar+ ν e+ ν e-Bar)-Flux

Note: ≥91% is vµ

Simulation of charged hadron background.

Background charge symmetric

STT Signal 1,100 events, Background 6 events

STT:Yes LAr: OK (High-Bkg) Sci-Trk: No

Shape of Enu using (Ee, θ e): Statistically precision poorer than Low-V0

LOW- ν_0 METHOD

igspace Relative flux vs. energy from low- ν_0 method:

$$N(E_{\nu}: E_{\text{HAD}} < \nu^{0}) = C\Phi(E_{\nu})f(\frac{\nu^{0}}{E_{\nu}})$$

the correction factor $f(\nu^0/E_{\nu}) \to 1$ for $\nu^0 \to 0$.

- \Longrightarrow Need precise determination of the muon energy scale and good resolution at low ν values
- Fit Near Detector $\nu_{\mu}, \bar{\nu}_{\mu}$ spectra:
 - Trace secondaries through beam-elements, decay;
 - Predict $\nu_{\mu}, \bar{\nu}_{\mu}$ flux by folding experiental acceptance;
 - Compare predicted to measured spectra $\Longrightarrow \chi^2$ minimization:

$$\frac{d^2\sigma}{dx_F dP_T^2} = f(x_F)g(P_T)h(x_F, P_T)$$

• Functional form constraint allows flux prediction close to $E_{
u} \sim
u^0$.

Sanjib Mishra docdb #300, #307

STT: Ok, LAr Ok with B, Scint. Ok

lacktriangle Add measurements of π^{\pm}/K^{\pm} ratios from hadro-production experiments to the empirical fit of the neutrino spectra in the Near Detector

 v_{μ} , Low-Nu0 Fit, ND at 500m \in Fit to V_{μ} -Data with Ehad<0.5 GeV [V_{0}]

Systematic-Errors in Low-v0 Relative Flux: NuMu & Anti-NuMu

```
√Variation in V0-cut

      Variation in V0-correction
     Systematic shift in Ehad-scale
           \checkmarkVary \sigma(QE) \pm 10\%
           \checkmark Vary \sigma(Res) \pm 10\%
           \checkmarkVary \circ(DIS) \pm 10\%
         Vary functional-forms
      Systematic shift in Emu-scale
   Beam-Transport (ND at 1000m)
                  Includes:
            *Alignment (1.0mm)
           *Horn Current (0.5%)
           *Inert material (0.25λ)
              *Proton spot size
⇒ Revisit these (?) & Investigate ND @ 500m
```

REDUNDANCY: ν_e & $\bar{\nu}_e$

♦ Direct measurement of ν_e AND $\bar{\nu}_e$ spectra in the Near Detector provides a powerful cross-check of the flux predictions:

$$\nu_e \equiv \mu^+(\pi^+ \to \nu_\mu) \oplus K^+(\to \nu_\mu) \oplus K_L^0$$
$$\bar{\nu}_e \equiv \mu^-(\pi^- \to \bar{\nu}_\mu) \oplus K^-(\to \bar{\nu}_\mu) \oplus K_L^0$$

igspace In the NuMI beam ν_e and $\bar{\nu}_e$ independent flux predictions:

$$\mu \implies Well \ constrained$$
 $K^{\pm} \implies Need \ \frac{K^{+}}{\pi^{+}} \& \frac{K^{-}}{\pi^{-}} \ MIPP$
 $K_{L}^{0} \implies MIPP \ (NOMAD, \ HiResM\nu)$

STT: Ok, LAr NO, Scint. NO

REQUIREMENTS FROM EXTERNAL MEASUREMENTS

- ♦ We need the following external measurements from p-production experiments (e.g. MIPP at Fermilab):
 - K^+/π^+ as a function of $P(2 \le P \le 20 \; GeV) \; \& \; P_T(\le 0.4 \; GeV)$ of K^+ and π^+
 - K^-/π^- as a function of $P(2 \le P \le 20 \ GeV) \ \& \ P_T(\le 0.4 \ GeV)$ of K^- and π^-
 - K⁰/K⁺ ratio
- We need these measurements off:
 - LBNE neutrino target;
 - Thin/Thick AI, Cu, etc. targets that compose horn/beam-elements;
 - Air (N)

DETECTOR REQUIREMENTS FOR OSCILLATION STUDIES

Flavor	Technique	Relative	Absolute	Relative	Detector requirements					
abundance normalization flux $\Phi(E_{\nu})$										
$\overline{ u_{\mu}}$	$\nu e^- \rightarrow \nu e^-$	1.00	3%	$\sim 5\%$	e identification/resolution					
					e^-/e^+ separation					
$\overline{ u_{\mu}}$	$\nu_{\mu}e^{-} \to \mu^{-}\nu_{e}$	1.00	3.5%		μ^-/μ^+ separation					
					μ energy scale					
$ u_{\mu}$	$ u_{\mu}n o \mu^{-}p$	1.00	3 - 5%	3 - 5%	D target					
	$Q^2 \to 0$				p angular and momentum resolution					
$ u_{\mu}$	low- ν_0	1.00		2.0%	Magnetized detector separating μ^-/μ^+					
$ u_e$	low- ν_0	0.01	1-3%	2.0%	e^-/e^+ separation (K_L^0)					

- ♦ In-situ measurement of flux normalization ~3%
- ◆ In-situ measurement of energy dependence ~2%
- \bullet Ratio ν_e/ν_μ to 0.1%

BACKGROUND MEASUREMENTS

- For the ν_e appearance search determine the π^0 yields as a function of E_{π^0} and θ_{π^0} in bins of hadronic energy $E_{\rm had}$:
 - Measure π⁰ production in both NC and CC; STT: Ok, LAr Ok, Scint. Ok
 - Correct MC background predictions predictions.
- For the $\nu_{\mu}(\bar{\nu}_{\mu})$ disappearance search measure π^{+} & π^{-} yields as a function of E_{π} and θ_{π} in bins of hadronic energy $E_{\rm had}$:
 - Measure π⁰ production in both NC and CC;
- STT: Ok, LAr NO, Scint. NO

- Measure the rate of μ[±] decays.
- ◆ Detailed study of cross section measurements in NOMAD and MINERvA

STT: Ok, LAr Ok, Scint. Ok

Coherent pi0 candidates in NOMAD

STT: Ok, LAr Ok, Scint. Ok

π0 Eff

STT: Ok, LAr Ok, Scint. Ok

> ➤ At least one converted Y in STT (Reconstructed e- & e+;

e- or e+ traverse ≥6 Mods)

➤ Another Y in the Downstream & Side ECAL

MEASUREMENT OF $\sin^2\theta_W$ FROM u-e

ightharpoonup Ratio of $\nu e \to \nu e$ and $\bar{\nu} e \to \bar{\nu} e$ NC elastic scattering, which is free from hadronic uncertainties:

$$R_{\nu e} \stackrel{\text{def}}{\equiv} \frac{\sigma(\bar{\nu} - e^{-})}{\sigma(\nu - e^{-})}$$

- Expected statistical uncertainty $\sim 1.0\%$. Systematic uncertainties related to the signal extraction reduced by $\nu/\bar{\nu}$ ratio and detector design:
 - High resolution e tracking and charge measurement avoid background extrapolation (CHARM II);
 - Electron energy measurement cancel in the ratio.

- lacklow Use the LAr detector present in the ND complex in front of the fine-grained tracker. The fiducial mass foreseen for the LAr is ~ 100 tons:
 - Total of \sim 80 \times 10^3 NC events in ν mode;
 - Total of \sim 50 \times 10^3 NC events in $\bar{\nu}$ mode.
- ★ The optimal analysis uses a combination of

TWO DETECTORS

- HiResMv provides a precise measurement of backgrounds (charge symmetric) and an overall calibration for LAr;
- LAr provides the actual statistics for $\sin^2 \theta_W$ and a good electron identification.
- ♦ Statistical uncertainty which can be reached on the ratio at the level of 0.3%
- Evaluated the uncertainty on the $\bar{\nu}/\nu$ flux ratio using the low- ν_0 method in the neutrino beam mode (positive focusing)
 - With current understanding of $p/\pi/K$ nuclear collisions and beam elements systematic uncertainty on the flux ratio of about 1%
 - ullet Overall improvement on the $\sin^2 heta_W$ only a factor ~ 1.4 for a total uncertainty of $\sim 0.56\%$

STT: Ok, LAr Ok high bkg, Scint. Ok?

MEASUREMENT OF Δs

Gerry Garvey and Rex Tayloe

- - -

$$R_{\nu}(NC/CC) = \frac{\sigma(\nu_{\mu} p \to \nu_{\mu} p)}{\sigma(\nu_{\mu} n \to \mu p)}$$

$$\overline{R_{\nu}}(NC/CC) = \frac{\sigma(\overline{\nu_{\mu}} p \to \overline{\nu_{\mu}} p)}{\sigma(\overline{\nu_{\mu}} p \to \mu n)}$$

$$\frac{d\sigma}{dQ^{2}}(vp \rightarrow vp) \propto (-G_{A} + G_{A}^{s})^{2}$$

$$G_{A}^{s}(Q^{2} = 0) = \Delta s$$

*'Neutron' (Dirt) Bkg

- ◆ Independent analysis of neutrino data and anti-neutrino data due to possible differences following MiniBooNE/LSND results
 - \implies Need a near detector which can identify e^+ from e^-
- ♦ Measure the ratio between the observed $\nu_e(\bar{\nu}_e)$ CC events and the observed $\nu_\mu(\bar{\nu}_\mu)$ CC events as a function of L/E_ν :

$$\mathcal{R}_{e\mu}(L/E) \equiv \frac{\# of \ \nu_e N \to e^- X}{\# of \ \nu_\mu N \to \mu^- X} (L/E)$$

$$\bar{\mathcal{R}}_{e\mu}(L/E) \equiv \frac{\# of \ \bar{\nu}_e N \to e^+ X}{\# of \ \bar{\nu}_\mu N \to \mu^+ X} (L/E)$$

- ♦ Compare the measured ratios $\mathcal{R}_{e\mu}(L/E)$ and $\bar{\mathcal{R}}_{e\mu}(L/E)$ with the predictions from the low- ν_0 flux determination assuming no oscillations \leftarrow Need External K+/ π_+ , K-/ π_0 -, K0L/K+
- igspace Same analysis technique used in NOMAD to search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations.

STT: Ok, LAr NO, Scint. NO

ainment of the events so reducing the usable statistics.

Measurement	STT	$\text{Sci}+\mu \text{Det}$	LAr	LArB	$LArB+Sci+\mu Det$	LAr+STT				
In Situ Flux Measurements for LBL:										
$\nu e^- \rightarrow \nu e^-$	Yes	No	Yes	No	No	Yes				
$\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$	Yes	Yes	No	Yes	Yes	Yes				
$\nu_{\mu}n \to \mu^- p$ at $Q^2 = 0$	Yes	Yes	No	No	Yes	Yes				
Low- ν_0 method	Yes	Yes	No	Yes	Yes	Yes				
ν_e and $\bar{\nu}_e$ CC	Yes	No	No	Yes	Yes	Yes				
Background Measurements for LBL:										
NC cross sections	Yes	Yes	No	Yes	Yes	Yes				
π^0/γ in NC and CC	Yes	Yes	Yes	Yes	Yes	Yes				
μ decays of π^{\pm}, K^{\pm}	Yes	No	No	Yes	Yes	Yes				
(Semi)-Exclusive processes	Yes	Yes	Yes	Yes	Yes	Yes				
Precision Measurements of Neutrino Interactions:										
$\sin^2 \theta_W \nu \text{ N DIS}$	Yes	No	No	No	No	Yes				
$\sin^2 \theta_W \nu e$	Yes	No	Yes	No	No	Yes				
Δs	Yes	Yes	Yes	Yes	Yes	Yes				
$\nu { m MSM}$ neutral leptons	Yes	Yes	Yes	Yes	Yes	Yes				
High Δm^2 oscillations	Yes	No	No	Yes	Yes	Yes				
Adler sum rule	Yes	No	No	No	No	Yes				
D/(p+n)	Yes	No	No	No	No	Yes				
Nucleon structure	Yes	Yes	Yes	Yes	Yes	Yes				
Nuclear effects	Yes	Yes	Yes	Yes	Yes	Yes				

TABLE XXVIII: Summary of measurements that can be performed by different ND reference configurations.

Summary page from the Physics Report

Physics Outlook

Near Detectors provide systematic constraints, redundancy to discover/measure elements of PMNS matrix:

Discover something entirely new

New realm of precision measurements given the statistics (especially with proton-injector) and commensurate resolution

A rich program in V-Precision measurements:

Over 70 most sensitive measurements/searches